- 5. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position, and has a speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is

 (1998S 2 Marks)
 - (a) $\sqrt{u^2-2gL}$
- (b) $\sqrt{2gL}$

(c) $\sqrt{u^2 - gL}$

(d) $\sqrt{2(u^2 - gL)}$

(d) Applying the principle of conservation of energy $(K.E.)_B + (P.E.)_B = (K.E.)_A + (P.E.)_A$, we get

$$\frac{1}{2}mv^2 + mgL = \frac{1}{2}mu^2$$

Hence,
$$v = \sqrt{u^2 - 2gL}$$
 ... (i)

Change in velocity = $|\vec{v} - \vec{u}| = \sqrt{v^2 + u^2}$

$$= \sqrt{2(u^2 - g\ell)} \quad [From(i)] \qquad u$$